ORIGINAL PAPER

Influence of FeCl₃ Nanoparticle Dispersion in Cassia fistula Biodiesel Blend on the Analysis of Vibration and Noise Intensity of a Diesel Engine

Sheik Hidayatulla Shariff¹ · Sriniyas Vadapalli² · Jaikumar Sagari²

Received: 21 September 2021 / Revised: 8 March 2022 / Accepted: 9 March 2022 © Krishtel eMaging Solutions Private Limited 2022

Abstract

Background Among several energy devices, compression ignition engines have great energy efficiency characteristics. One of the principal drawbacks of diesel engine is enormous vibration and loud noise. Thus, it is conceivable to work with nanoparticle dispersed biodiesel blends for additional reduction.

Purpose The present investigation dwells on the influence of Cassia Fistula biodiesel blend (B20) and FeCl₃ nanoparticle on the compression ignition engine's vibration and noise investigation.

Methods The experimentation was executed at different injection pressures (IPs) from 180- 200 bar. Besides, the FeCl₃ nanoparticles were assumed as 50-100 ppm. Further, the dispersant was added at a quantity of 1:1 ratio.

Results The RMS velocity (vibration) and RMS noise were seen slightly minor for B20 apart from regular diesel. Likewise, the dispersant added FeCl₃ nanoparticle in B20 has revealed an admirable decrease in vibration and noise. Finally, the increase in IP was depicted as minor vibration and noise for all the fuels.

Conclusion The lowest values were attained for B20+75 ppm FeCl₃+75 ppm dispersant. The least RMS velocity and RMS noise attained were 0.088 m/s and 55.25 dB for B20+75 ppm FeCl₃+75 ppm for IP of 220 bar.

Keywords Cassia fistula · Biodiesel · Cetane number · Noise · Vibration

Abbreviations B100 B20	Clean biodiesel derived from 20% biodiesel	B20+75 ppm FeCl ₃ +75 ppm Dispersant	20% biodiesel + 75 ppm ferric chloride + 75 ppm dispersant
$B20 + 50 \text{ ppm FeCl}_3$	20% biodiesel + 50 ppm ferric chloride	B20+100 ppm FeCl ₃ +100 ppm Dispersant	20% biodiesel + 100 ppm ferric
$B20+75 \text{ ppm FeCl}_3$	20% biodiesel + 75 ppm ferric		chloride + 100 ppm dispersant
	chloride	ppm	Part per million
$B20 + 100 \text{ ppm FeCl}_3$	20% biodiesel + 100 ppm ferric	NaOH	Sodium hydroxide
	chloride	IP/IPs	Injection pressure (s)
$B20 + 50 \text{ ppm FeCl}_3$		BTE	Brake thermal efficiency
+ 50 ppm Dispersant	20% biodiesel + 50 ppm ferric	dB	Decibel unit
	chloride + 50 ppm dispersant	BSFC	Brake specific fuel consumption
		СР	Cylinder pressure (bar)
		NHRR	Net heat release rate (J/degree
			CA)
		FFT	Fast fourier transforms

RMS

ASTM

🖂 Jaikumar Sagari sagari.jaikumar1@gmail.com

> Department of Mechanical Engineering, Avanthi Institute of Engineering and Technology, Vizianagaram, India

Department of Mechanical Engineering, GITAM Institute of Technology, Visakhapatnam, India

American Society for Testing and

Root mean square

Materials